A Nonlinear Fourth-order Parabolic Equation with Nonhomogeneous Boundary Conditions

نویسندگان

  • Maria Pia Gualdani
  • Ansgar Jüngel
  • Giuseppe Toscani
چکیده

Abstract. A nonlinear fourth-order parabolic equation with nonhomogeneous Dirichlet–Neumann boundary conditions in one space dimension is analyzed. This equation appears, for instance, in quantum semiconductor modeling. The existence and uniqueness of strictly positive classical solutions to the stationary problem are shown. Furthermore, the existence of global nonnegative weak solutions to the transient problem is proved. The proof is based on an exponential transformation of variables and new “entropy” estimates. Moreover, it is proved by the entropy–entropy production method that the transient solution converges exponentially fast to its steady state in the L1 norm as time goes to infinity, under the condition that the logarithm of the steady state is concave. Numerical examples show that this condition seems to be purely technical.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-time Behavior for a Nonlinear Fourth-order Parabolic Equation

We study the asymptotic behavior of solutions of the initialboundary value problem, with periodic boundary conditions, for a fourth-order nonlinear degenerate diffusion equation with a logarithmic nonlinearity. For strictly positive and suitably small initial data we show that a positive solution exponentially approaches its mean as time tends to infinity. These results are derived by analyzing...

متن کامل

A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities∗

A nonlinear fourth-order parabolic equation in one space dimension with periodic boundary conditions is studied. This equation arises in the context of fluctuations of a stationary nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of global-in-time non-negative weak solutions is shown. A criterion for the uniqueness of non-negative weak solutions is gi...

متن کامل

Se p 20 04 A nonlinear fourth - order parabolic equation and related logarithmic Sobolev inequalities ∗

A nonlinear fourth-order parabolic equation in one space dimension with periodic boundary conditions is studied. This equation arises in the context of fluctuations of a stationary nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of global-in-time non-negative weak solutions is shown. A criterion for the uniqueness of non-negative weak solutions is gi...

متن کامل

The Linearized Crocco Equation

In this paper, we study the existence and uniqueness of a degenerate parabolic equation, with nonhomogeneous boundary conditions, coming from the linearization of the Crocco equation [12]. The Crocco equation is a nonlinear degenerate parabolic equation obtained from the Prandtl equations with the so-called Crocco transformation. The linearized Crocco equation plays a major role in stabilizatio...

متن کامل

A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS

Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2006